3.7.45 \(\int \frac {1}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx\) [645]

Optimal. Leaf size=193 \[ \frac {\text {ArcTan}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{3/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{3/2} d}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[Out]

arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I*a-b)^(3/2)/d-arctanh((I*a+b)^(1/2)*tan(d*x+c)
^(1/2)/(a+b*tan(d*x+c))^(1/2))/(I*a+b)^(3/2)/d-2/a/d/tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)-2*b*(a^2+2*b^2)*t
an(d*x+c)^(1/2)/a^2/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.45, antiderivative size = 193, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3650, 3730, 3697, 3696, 95, 209, 212} \begin {gather*} -\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a^2 d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {\text {ArcTan}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Tan[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]/((I*a - b)^(3/2)*d) - ArcTanh[(Sqrt[I*a +
b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]/((I*a + b)^(3/2)*d) - 2/(a*d*Sqrt[Tan[c + d*x]]*Sqrt[a + b*Ta
n[c + d*x]]) - (2*b*(a^2 + 2*b^2)*Sqrt[Tan[c + d*x]])/(a^2*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {1}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx &=-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \int \frac {b+\frac {1}{2} a \tan (c+d x)+b \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}} \, dx}{a}\\ &=-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {4 \int \frac {\frac {a^2 b}{4}+\frac {1}{4} a^3 \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{a^2 \left (a^2+b^2\right )}\\ &=-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a-b)}-\frac {\int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a+b)}\\ &=-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 (i a-b) d}-\frac {\text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 (i a+b) d}\\ &=-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b) d}-\frac {\text {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b) d}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a-b)^{3/2} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(i a+b)^{3/2} d}-\frac {2}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 b \left (a^2+2 b^2\right ) \sqrt {\tan (c+d x)}}{a^2 \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 4.44, size = 202, normalized size = 1.05 \begin {gather*} -\frac {\frac {\sqrt [4]{-1} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{(-a+i b)^{3/2}}+\frac {\frac {\sqrt [4]{-1} (a-i b) \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}+\frac {2 \left (a \left (a^2+b^2\right )+b \left (a^2+2 b^2\right ) \tan (c+d x)\right )}{a^2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{a^2+b^2}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Tan[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^(3/2)),x]

[Out]

-((((-1)^(1/4)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(-a + I*b)^(3/
2) + (((-1)^(1/4)*(a - I*b)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sq
rt[a + I*b] + (2*(a*(a^2 + b^2) + b*(a^2 + 2*b^2)*Tan[c + d*x]))/(a^2*Sqrt[Tan[c + d*x]]*Sqrt[a + b*Tan[c + d*
x]]))/(a^2 + b^2))/d)

________________________________________________________________________________________

Maple [B] result has leaf size over 500,000. Avoiding possible recursion issues.
time = 0.98, size = 799513, normalized size = 4142.55 \[\text {output too large to display}\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*tan(d*x + c) + a)^(3/2)*tan(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(1/((a + b*tan(c + d*x))**(3/2)*tan(c + d*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {tan}\left (c+d\,x\right )}^{3/2}\,{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(tan(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)),x)

[Out]

int(1/(tan(c + d*x)^(3/2)*(a + b*tan(c + d*x))^(3/2)), x)

________________________________________________________________________________________